Abstract
AbstractHigh-entropy alloys (HEAs) have attracted extensive attention in recent decades due to their unique chemical, physical, and mechanical properties. An in-depth understanding of the structure–property relationship in HEAs is the key to the discovery and design of new compositions with desirable properties. Related to this, materials genome strategy has been increasingly used for discovering new HEAs with better performance. This review paper provides an overview of key advances in this fast-growing area, along with current challenges and potential opportunities for HEAs. We also discuss related topics, such as high-throughput preparation, characterization, and computation of HEAs, and data-driven machine learning for accelerating alloy development. Finally, future research directions and perspectives for the materials genome-assisted design of HEAs are proposed and discussed.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献