2 μm passively mode-locked thulium-doped fiber lasers with Ta2AlC-deposited tapered and side-polished fibers

Author:

Ahmad H.,Azri M. F. M.,Ramli R.,Samion M. Z.,Yusoff N.,Lim K. S.

Abstract

AbstractIn this work, mode-locked thulium-doped fiber lasers operating in the 2 µm wavelength region were demonstrated using tantalum aluminum carbide (Ta2AlC)-based saturable absorbers (SAs) utilizing the evanescent wave interaction. The Ta2AlC MAX Phase was prepared by dissolving the Ta2AlC powder in isopropyl alcohol and then deposited onto three different evanescent field-based devices, which were the tapered fiber, side-polished fiber, and arc-shaped fiber. Flame-brushing and wheel-polishing techniques were used to fabricate the tapered and arc-shaped fibers, respectively, while the side-polished fiber was purchased commercially. All three SA devices generated stable mode-locked pulses at center wavelengths of 1937, 1931, and 1929 nm for the tapered, side-polished, and arc-shaped fibers. The frequency of the mode-locked pulses was 10.73 MHz for the tapered fiber, 9.58 MHz for the side-polished fiber, and 10.16 MHz for the arc-shaped fiber. The measured pulse widths were 1.678, 1.734, and 1.817 ps for each of the three SA devices. The long-term stability of the mode-locked lasers was tested for each configuration over a 2-h duration. The lasers also showed little to no fluctuations in the center wavelengths and the peak optical intensities, demonstrating a reliable, ultrafast laser system.

Funder

Universiti Malaya

Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3