High-sensitivity and high-speed measurements of ultrashort pulses as short as 74 fs at 1.9 µm using a GRENOUILLE device

Author:

Batov Daniil1ORCID,Voropaev Vasilii1ORCID,Jafari Rana2,Akturk Selcuk2,Lazarev Vladimir1ORCID,Karasik Valeriy1,Trebino Rick3,Tarabrin Mikhail1ORCID

Affiliation:

1. Bauman Moscow State Technical University

2. Swamp Optics LLC

3. Georgia Institute of Technology

Abstract

Ultrashort laser pulse sources in the wavelength range of 1.8 to 2 µm have many potential applications including medicine, materials processing, and sensing. In the use of such lasers, a crucial task is to measure their pulse’s temporal intensity and phase. Such measurement devices are most useful when they are simple to build and operate and also have high speed and high sensitivity. The GRENOUILLE measurement device with few components, no moving parts, sensitivity of hundreds of picojoules, and measurement speed of hundreds of milliseconds, is commonly used to solve this problem at other wavelengths. In this paper, the measurement of ultrashort pulses by a GRENOUILLE device, developed using a silicon matrix sensor, for pulses in the wavelength range of 1.8 to 2 µm has been demonstrated. It is shown that ultrashort pulses with durations of 74 to 900 fs and a maximum spectral FWHM of 85 nm can be measured with this device. The recently developed ultra-reliable RANA approach was used for pulse retrieval from the measured traces. The device’s performance was validated by comparing its measurements with those obtained by the robust FROG technique.

Funder

Bauman Moscow State Technical University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3