Using the maximum clustering heterogeneous set-proportion to select the maximum window size for the spatial scan statistic

Author:

Wang Wei,Zhang Tao,Yin Fei,Xiao Xiong,Chen Shiqi,Zhang Xingyu,Li Xiaosong,Ma YueORCID

Abstract

AbstractThe spatial scan statistic has been widely used to detect spatial clusters that are of common interest in many health-related problems. However, in most situations, different scan parameters, especially the maximum window size (MWS), result in obtaining different detected clusters. Although performance measures can select an optimal scan parameter, most of them depend on historical prior or true cluster information, which is usually unavailable in practical datasets. Currently, the Gini coefficient and the maximum clustering set-proportion statistic (MCS-P) are used to select appropriate parameters without any prior information. However, the Gini coefficient may be unstable and select inappropriate parameters, especially in complex practical datasets, while the MCS-P may have unsatisfactory performance in spatial datasets with heterogeneous clusters. Based on the MCS-P, we proposed a new indicator, the maximum clustering heterogeneous set-proportion (MCHS-P). A simulation study of selecting the optimal MWS confirmed that in spatial datasets with heterogeneous clusters, the MWSs selected using the MCHS-P have much better performance than those selected using the MCS-P; moreover, higher heterogeneity led to a larger advantage of the MCHS-P, with up to 538% and 69.5% improvement in the Youden's index and misclassification in specific scenarios, respectively. Meanwhile, the MCHS-P maintains similar performance to that of the MCS-P in spatial datasets with homogeneous clusters. Furthermore, the MCHS-P has significant improvements over the Gini coefficient and the default 50% MWS, especially in datasets with clusters that are not far from each other. Two practical studies showed similar results to those obtained in the simulation study. In the case where there is no prior information about the true clusters or the heterogeneity between the clusters, the MCHS-P is recommended to select the MWS in order to accurately identify spatial clusters.

Funder

National Natural Science Foundation of China

Sichuan Provincial Department of Science and Technology | Sichuan Province Science and Technology Support Program

Chengdu Science and Technology Bureau

Postdoctoral Research foundation of Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3