Optimizing the maximum reported cluster size for the multinomial-based spatial scan statistic

Author:

Moon Jisu,Kim Minseok,Jung Inkyung

Abstract

Abstract Background Correctly identifying spatial disease cluster is a fundamental concern in public health and epidemiology. The spatial scan statistic is widely used for detecting spatial disease clusters in spatial epidemiology and disease surveillance. Many studies default to a maximum reported cluster size (MRCS) set at 50% of the total population when searching for spatial clusters. However, this default setting can sometimes report clusters larger than true clusters, which include less relevant regions. For the Poisson, Bernoulli, ordinal, normal, and exponential models, a Gini coefficient has been developed to optimize the MRCS. Yet, no measure is available for the multinomial model. Results We propose two versions of a spatial cluster information criterion (SCIC) for selecting the optimal MRCS value for the multinomial-based spatial scan statistic. Our simulation study suggests that SCIC improves the accuracy of reporting true clusters. Analysis of the Korea Community Health Survey (KCHS) data further demonstrates that our method identifies more meaningful small clusters compared to the default setting. Conclusions Our method focuses on improving the performance of the spatial scan statistic by optimizing the MRCS value when using the multinomial model. In public health and disease surveillance, the proposed method can be used to provide more accurate and meaningful spatial cluster detection for multinomial data, such as disease subtypes.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3