Author:
de Medeiros André Dantas,Capobiango Nayara Pereira,da Silva José Maria,da Silva Laércio Junio,da Silva Clíssia Barboza,dos Santos Dias Denise Cunha Fernandes
Abstract
AbstractNew computer vision solutions combined with artificial intelligence algorithms can help recognize patterns in biological images, reducing subjectivity and optimizing the analysis process. The aim of this study was to propose an approach based on interactive and traditional machine learning methods to classify soybean seeds and seedlings according to their appearance and physiological potential. In addition, we correlated the appearance of seeds to their physiological performance. Images of soybean seeds and seedlings were used to develop models using low-cost approaches and free-access software. The models developed showed high performance, with overall accuracy reaching 0.94 for seeds and seedling classification. The high precision of the models that were developed based on interactive and traditional machine learning demonstrated that the method can easily be used to classify soybean seeds according to their appearance, as well as to classify soybean seedling vigor quickly and non-subjectively. The appearance of soybean seeds is strongly correlated with their physiological performance.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Âmparo a Pesquisa do Estado de São Paulo –FAPESP
Publisher
Springer Science and Business Media LLC
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献