Global processing provides malignancy evidence complementary to the information captured by humans or machines following detailed mammogram inspection

Author:

Gandomkar Ziba,Siviengphanom Somphone,Ekpo Ernest U.,Suleiman Mo’ayyad,Taba‬ Seyedamir Tavakoli,Li Tong,Xu Dong,Evans Karla K.,Lewis Sarah J.,Wolfe Jeremy M.,Brennan Patrick C.

Abstract

AbstractThe information captured by the gist signal, which refers to radiologists’ first impression arising from an initial global image processing, is poorly understood. We examined whether the gist signal can provide complementary information to data captured by radiologists (experiment 1), or computer algorithms (experiment 2) based on detailed mammogram inspection. In the first experiment, 19 radiologists assessed a case set twice, once based on a half-second image presentation (i.e., gist signal) and once in the usual viewing condition. Their performances in two viewing conditions were compared using repeated measure correlation (rm-corr). The cancer cases (19 cases × 19 readers) exhibited non-significant trend with rm-corr = 0.012 (p = 0.82, CI: −0.09, 0.12). For normal cases (41 cases × 19 readers), a weak correlation of rm-corr = 0.238 (p < 0.001, CI: 0.17, 0.30) was found. In the second experiment, we combined the abnormality score from a state-of-the-art deep learning-based tool (DL) with the radiological gist signal using a support vector machine (SVM). To obtain the gist signal, 53 radiologists assessed images based on half-second image presentation. The SVM performance for each radiologist and an average reader, whose gist responses were the mean abnormality scores given by all 53 readers to each image was assessed using leave-one-out cross-validation. For the average reader, the AUC for gist, DL, and the SVM, were 0.76 (CI: 0.62–0.86), 0.79 (CI: 0.63–0.89), and 0.88 (CI: 0.79–0.94). For all readers with a gist AUC significantly better than chance-level, the SVM outperformed DL. The gist signal provided malignancy evidence with no or weak associations with the information captured by humans in normal radiologic reporting, which involves detailed mammogram inspection. Adding gist signal to a state-of-the-art deep learning-based tool improved its performance for the breast cancer detection.

Funder

National Breast Cancer Foundation

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3