Computer-extracted global radiomic features can predict the radiologists’ first impression about the abnormality of a screening mammogram

Author:

Siviengphanom Somphone1ORCID,Lewis Sarah J1,Brennan Patrick C1,Gandomkar Ziba1

Affiliation:

1. Medical Image Optimisation and Perception Group, Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney, NSW 2006, Australia

Abstract

Abstract Objective Radiologists can detect the gist of abnormal based on their rapid initial impression on a mammogram (ie, global gist signal [GGS]). This study explores (1) whether global radiomic (ie, computer-extracted) features can predict the GGS; and if so, (ii) what features are the most important drivers of the signals. Methods The GGS of cases in two extreme conditions was considered: when observers detect a very strong gist (high-gist) and when the gist of abnormal was not/poorly perceived (low-gist). Gist signals/scores from 13 observers reading 4191 craniocaudal mammograms were collected. As gist is a noisy signal, the gist scores from all observers were averaged and assigned to each image. The high-gist and low-gist categories contained all images in the fourth and first quartiles, respectively. One hundred thirty handcrafted global radiomic features (GRFs) per mammogram were extracted and utilized to construct eight separate machine learning random forest classifiers (All, Normal, Cancer, Prior-1, Prior-2, Missed, Prior-Visible, and Prior-Invisible) for characterizing high-gist from low-gist images. The models were trained and validated using the 10-fold cross-validation approach. The models’ performances were evaluated by the area under receiver operating characteristic curve (AUC). Important features for each model were identified through a scree test. Results The Prior-Visible model achieved the highest AUC of 0.84 followed by the Prior-Invisible (0.83), Normal (0.82), Prior-1 (0.81), All (0.79), Prior-2 (0.77), Missed (0.75), and Cancer model (0.69). Cluster shade, standard deviation, skewness, kurtosis, and range were identified to be the most important features. Conclusions Our findings suggest that GRFs can accurately classify high- from low-gist images. Advances in knowledge Global mammographic radiomic features can accurately predict high- from low-gist images with five features identified to be valuable in describing high-gist images. These are critical in providing better understanding of the mammographic image characteristics that drive the strength of the GGSs which could be exploited to advance breast cancer (BC) screening and risk prediction, enabling early detection and treatment of BC thereby further reducing BC-related deaths.

Funder

National Health and Medical Research Council

National Breast Cancer Foundation

Cancer Institute New South Wales Early Career Fellowship

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3