Untargeted lipidomics reveals progression of early Alzheimer’s disease in APP/PS1 transgenic mice

Author:

Zhang Xueju,Liu Weiwei,Zan Jie,Wu Chuanbin,Tan Wen

Abstract

AbstractAlzheimer’s Disease (AD) is closely connected to aberrant lipid metabolism. However, how early AD-like pathology synchronously influences brain and plasma lipidome in AD mice remains unclear. The study of dynamic change of lipidome in early-stage AD mice could be of great interest for the discovery of lipid biomarkers for diagnosis and monitoring of early-stage AD. For the purpose, an untargeted lipidomic strategy was developed for the characterization of lipids (≤ 1,200 Da) perturbation occurring in plasma and brain in early-stage AD mice (2, 3 and 7 months) by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Significant changes were detected in the levels of several lipid species including lysophospholipids, phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and Ceramides (Cers), as well as other related lipid compounds such as fatty acids (FAs), diacylglycerols (DGs) and triacylglycerols (TGs) in AD mice. In this sense, disorders of lipid metabolism appear to involve in multiple factors including overactivation of phospholipases and diacylglycerol lipases, decreased anabolism of lysophospholipids in plasma and PEs in plasma and brain, and imbalances in the levels of PCs, FAs and glycerides at different ages. We revealed the changing panels of potential lipid biomarkers with the development of early AD. The study raises the possibility of developing lipid biomarkers for diagnosis of early-stage AD.

Funder

China Postdoctoral Science Foundation Grant

2017 PhD Start-up Found of Guangdong Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

National Science and Technology Major Projects for Major New Drugs Innovation and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference69 articles.

1. Patterson, C. World Alzheimer Report 2018: The state of the art of dementia research: New frontiers. Alzheimer's Disease International, London, 2018, https://www.alz.co.uk/research/world-report-2018.https://www.alz.co.uk/research/world-report-2018

2. Prince, M. et al. World Alzheimer Report 2014: World Alzheimer Report. Alzheimer's Disease International, London, 2014, https://www.alz.co.uk/research/world-report-2014.

3. Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

4. Joanna, L. J. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170 (2004).

5. Selkoe, D. J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3