Effect of fabrication process on contact resistance and channel in graphene field effect transistors

Author:

Khosravi Rad Babak,Mehrfar Amir Hossein,Sadeghi Neisiani Zahra,Khaje Mahdi,Eslami Majd Abdollah

Abstract

AbstractContact resistance, as one of the main parameters that limits the performance of graphene-based transistors, is highly dependent on the metal-graphene contact fabrication processes. These processes are investigated and the corresponding resistances are measured based on the transfer length method (TLM). In fabrication processes, when annealing is done on chemical vapor deposition (CVD)-grown graphene samples that are transferred onto SiO2/Si substrates, the adhesion of graphene to the substrate is improved, and poly methyl methacrylate (PMMA) residues are also reduced. When the metal deposition layer is first applied to the graphene, and then, the photolithography process is performed to define the electrodes and graphene sheet, the graphene-metal contact resistance is better than that in other methods due to the removal of photoresist residues. In fact, by changing the sequence of the fabrication process steps, the direct contact between photoresist and graphene surface can be prevented. Thus, the contact resistance is reduced and conductivity increases, and in this way, the performance of graphene transistor improves. The results show that the fabrication process has a noticeable effect on the transistor properties such as contact resistance, channel sheet resistance, and conductivity.‌ Here, by using the annealing process and changing the order of photolithography processes, a contact resistance of 470 Ω μm is obtained for Ni-graphene contact, which is relatively favorable.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3