Author:
Bulut Haydar,Hattori Shin-ichiro,Aoki-Ogata Hiromi,Hayashi Hironori,Das Debananda,Aoki Manabu,Davis David A.,Rao Kalapala Venkateswara,Nyalapatla Prasanth R.,Ghosh Arun K.,Mitsuya Hiroaki
Abstract
AbstractHIV-1 protease inhibitors (PIs), such as darunavir (DRV), are the key component of antiretroviral therapy. However, HIV-1 often acquires resistance to PIs. Here, seven novel PIs were synthesized, by introducing single atom changes such as an exchange of a sulfur to an oxygen, scission of a single bond in P2′-cyclopropylaminobenzothiazole (or -oxazole), and/or P1-benzene ring with fluorine scan of mono- or bis-fluorine atoms around DRV’s scaffold. X-ray structural analyses of the PIs complexed with wild-type Protease (PRWT) and highly-multi-PI-resistance-associated PRDRVRP51 revealed that the PIs better adapt to structural plasticity in PR with resistance-associated amino acid substitutions by formation of optimal sulfur bond and adaptation of cyclopropyl ring in the S2′-subsite. Furthermore, these PIs displayed increased cell permeability and extreme anti-HIV-1 potency compared to DRV. Our work provides the basis for developing novel PIs with high potency against PI-resistant HIV-1 variants with a high genetic barrier.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献