Experimental investigation on machining characteristics of titanium processed using electrolyte sonicated µ-ECDM system

Author:

Bhargav K. V. J.ORCID,Balaji P. S.ORCID,Sahu Ranjeet KumarORCID,Leblouba MoussaORCID

Abstract

AbstractMicromachining of difficult-to-machine materials is of prime focus nowadays. One such material is Titanium, which has numerous applications in aerospace, chemical, and biomedical industries. The micromachining of Titanium has become the need of the day because of its exhilarating properties. This investigation employs a tailor-made electrolyte sonicated micro-electrochemical discharge machining (ES-µ-ECDM) system to generate microholes in a commercially pure titanium plate with a thickness of 1000 µm. The machining chamber is the ultrasonication unit (36 kHz) with process parameters voltage (V), concentration (wt%), and duty factor (DF) chosen at three levels. The FCC-RSM-based DOE is selected for experimentation to study the machining characteristics like material removal rate, overcut, and circularity. Through holes were achieved at parameters of 80 V, 25 wt%, and 60% DF and 80 V, 30 wt%, and 50% DF. The incorporation of ultrasonication into the system enhanced electrolyte replenishment and evacuation of the debris at the machining vicinity. The assistance technique improved the gas film stabilization around the tool enabling uniform machining. The multi-response optimization is performed using the MOJAYA algorithm to obtain Pareto optimal solutions, and the MADM (R-method) is employed to obtain the optimal parameter. The optimal parameter was found to be 69 V, 30 wt%, and 50% DF, at which the machined microhole was found to have a circularity of 0.9615 with minimal surface defects.

Funder

National Institute of Technology Rourkela

National Institute of Technology Karnataka Surathkal

University of Sharjah

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3