A study of degradation mechanisms in PVDF-based photovoltaic backsheets

Author:

Uličná Soňa,Owen-Bellini Michael,Moffitt Stephanie L.,Sinha Archana,Tracy Jared,Roy-Choudhury Kaushik,Miller David C.,Hacke Peter,Schelhas Laura T.

Abstract

AbstractCommercial backsheets based on polyvinylidene fluoride (PVDF) can experience premature field failures in the form of outer layer cracking. This work seeks to provide a better understanding of the changes in material properties that lead to crack formation and find appropriate accelerated tests to replicate them. The PVDF-based backsheet outer layer can have a different structure and composition, and is often blended with a poly(methyl methacrylate) (PMMA) polymer. We observed depletion of PMMA upon aging with sequential (MAST) and combined (C-AST) accelerated stress testing. In field-aged samples from Arizona and India, where PVDF crystallizes in its predominant α-phase, the degree of crystallinity greatly increased. MAST and C-AST protocols were, to some extent, able to replicate the increase in crystallinity seen in PVDF after ~ 7 years in the field, but no single-stress test condition (UV, damp heat, thermal cycling) resulted in significant changes in the material properties. The MAST regimen used here was too extreme to produce realistic degradation, but the test was useful in discovering weaknesses of the particular PVDF-based outer layer structure studied. No excessive β-phase formation was observed after aging with any test condition; however, the presence of β-phase was identified locally by Fourier transform infrared spectroscopy (FTIR). We conclude that both MAST and C-AST are relevant tests for screening outdoor failure mechanisms in PVDF backsheets, as they were successful in producing material degradation that led to cracking.

Funder

Office of Energy Efficiency and Renewable Energy

Solar Energy Technologies Office

Basic Energy Sciences

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3