Moisture variation inferred from tree rings in north central China and its links with the remote oceans

Author:

Zheng Zeyu,Jin Liya,Li Jinjian,Chen Jie,Zhang Xiaojian,Wang Zhenqian

Abstract

AbstractIn this study we presented a composite standard chronology, spanning 1635–2018 to reconstruct May–July moisture variation in north central China. Our reconstruction revealed four severe dry epochs and five pronounced wet epochs. Additionally, spatial correlation analysis of our reconstruction with the actual self-calibrating Palmer drought severity index showed that our reconstruction was representative of large-scale May–July moisture changes. Both the severe dry and pronounced wet epochs showed one-to-one correspondence with other reconstructions nearby during their common periods, which demonstrated the reliability of our reconstruction backwards in time. Spectral analysis showed that significant spectral peaks were found at 2.1–3.8 years, which fell within the overall bandwidth of the El Niño-Southern Oscillations (ENSO). The spatial correlation patterns between our reconstruction and sea surface temperature (SST) in the equatorial eastern Pacific further confirmed the link between regional moisture and ENSO, with warm-phase ENSO resulting in low moisture and vice-versa. However, this link was time-dependent during the past four centuries, and was modulated by different phases of SST in the tropical Indian Ocean. Additionally, significant peaks at 24.9–46.5 years and spatial correlation patterns indicated that the Pacific Decadal Oscillation and the North Atlantic Oscillation may be the possible forcing factors of regional moisture at lower frequencies.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3