Understanding the Natural Variability of Still Water Levels in the San Francisco Bay Over the Past 500 yr: Implications for Future Coastal Flood Risk

Author:

Mukhopadhyay Sudarshana1ORCID,Leung Meredith2ORCID,Cagigal Laura3ORCID,Kucharski John4ORCID,Ruggiero Peter2,Steinschneider Scott1ORCID

Affiliation:

1. Department of Biological and Environmental Engineering Cornell University Ithaca NY USA

2. College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA

3. Department of Sciences and Technologies of Water and Environment Universidad de Cantabria Santander Spain

4. Institute for Water Resources Hydrologic Engineering Center Davis CA USA

Abstract

AbstractIncreasing exposure to coastal flood hazards will potentially induce an enormous socio‐economic toll on vulnerable communities. To accurately characterize the hazard, we must consider both natural water level variability and climate change‐induced sea‐level rise. In this study, we develop a paleo‐proxy‐based reconstruction of coastal flood events over the last 500 yr to capture natural water level variability and superimpose that reconstruction onto expected sea‐level rise to explore interannual and multidecadal variability in plausible future coastal flood risk. We first develop reconstructions of leading principal components (PCs) of sea surface temperature anomalies from 1500 CE onwards, using tree‐ring, coral, and sclerosponge chronology‐based El Niño Southern Oscillation reconstructions as predictors in a wavelet autoregression model. These reconstructions of PCs are then used in a stochastic water level emulator to develop ensemble simulations of hourly still water levels (SWLs) in the San Francisco Bay. The emulator accounts for multiple relevant processes, including monthly mean sea level (MMSL) anomalies, storm surge, and tide, all varying at different timescales. Accounting for natural variability in water levels over 1500–2000 CE increases coastal flood risk beyond that suggested by instrumental records alone. When superimposed on 0.22 m of sea‐level rise (approximately the amount experienced over the previous century), the simulations show that while high tides and large storm surges cause the smaller extreme SWLs, the larger extreme SWLs occur during concurrent high MMSL, high tides, and significant storm surges. Our findings thus highlight the need to consider natural water level variability for coastal adaptation and planning.

Funder

U.S. Army Corps of Engineers

Engineer Research and Development Center

Environmental Laboratory

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3