Dead-time compensation in three-phase grid-tied inverters using LQG multivariable control

Author:

Mazaheri Ali,Barati FarhadORCID,Ghavipanjeh Farideh

Abstract

AbstractDead-time is the most important disturbance in a voltage-source inverter’s operation. It introduces low-order harmonics at the inverter’s output voltage. To compensate for the dead-time effects in three-phase grid-tied inverters, this paper proposes a Linear Quadratic Gaussian (LQG) multivariable control approach. The LQG multivariable control is known as a robust control approach while provides a high band-width for the closed-loop system. Therefore, it promises significant attenuations in the dead-time introduced harmonics. To achieve a high performance, we run the three-phase grid-tied inverter in the current-controlled mode. Based on the nominal multivariable model derived for the three-phase grid-tied inverter in a synchronous reference frame, the LQG controller is composed such that the closed-loop system exhibits robust stability while attenuates disturbances significantly. The dead-time introduced harmonics produce disturbances in the synchronous reference frame with the highest frequencies. This is the reason for considering the dead-time as the most important disturbance in an inverter’s operation. For an experimental set-up manufactured for the three-phase grid-tied inverter, we developed a detailed model in MATLAB/Simulink. It is employed for the performance verifications of designed LQG controller. Extensive results are presented for different important scenarios, based on which, the excellent performance of proposed approach is proven. In fact, by employing the proposed approach, the dead-time introduced harmonics are significantly attenuated such that a Total Harmonics Distortions (THD) of about 5% is achieved for the injected currents to grid which meets the IEEE 1547 standard.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3