Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control

Author:

AL-Wesabi Ibrahim,Zhijian Fang,Hussein Farh Hassan M.,A. Al-Shamma’a Abdullrahman,Dong Hanlin,M. Al-Shaalan Abdullah,Kandil Tarek

Abstract

AbstractLow ripples and variations in the DC-Bus voltage in single-phase Photovoltaic/Battery Energy Storage (PV/BES) grid-connected systems may cause significant harmonics distortion, instability, and reduction in power factor. The use of short-life electrolytic capacitor on the DC-Bus is considered a standard way for reducing these ripples and variations because of its large capacitance but results in short lifetime of the inverter. Replacing large electrolytic capacitors with small film capacitors can extend the lifetime of a PV/BES grid-connected system because small film capacitors have longer lifetime than large electrolytic capacitors. These film capacitors have low capacitance, which causes severe oscillations in the output current, and voltage drop due to huge ripples on the DC-Bus voltage. In this research, the main goal is to eliminate the output current ripples and voltage fluctuations associated with employing film capacitors. First, a modified incremental conductance (MIC) technique is proposed for tracking the maximum power by controlling the duty ratio of the DC-DC boost converter. Second, for the first time, a simple and novel d-q current regulation technique, which employs flowchart decision logic, is used in the DC-Bus control system for both the PV power system and the state of charge (SOC) of the BES. In this case, the DC-Bus controller is characterized by a cost-effective implementation because of its low sampling frequency. Although the presented approaches are successful in eliminating voltage distortion and fluctuations, they have unacceptable dynamic performance. Therefore, to improve the dynamic performance, BES was used to maintain a reliable and stable harvest from PV modules for varying loads while also increasing the dynamic performance of the overall system. The proposed PV/BES grid-connected systems, which employs a small 10-µF bus capacitor, is simulated and connected to the grid (230 V, 50 Hz). The DC-Bus voltage overshoot, undershoot and the total harmonics distortion (THD) of the output current for the proposed MIC are (1 V), (2.5 V) and (less than 5%), respectively. The average time response under rising radiation to track the global peak for MIC, traditional incremental conductance and variable step size incremental conductance are 1.403 s, 1.501 s and 1.113 s respectively. The obtained findings demonstrated the efficacy and superiority of the proposed d-q current control and MIC technique.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3