Quantitative kinetics of intracellular singlet oxygen generation using a fluorescence probe

Author:

Murotomi Kazutoshi,Umeno Aya,Sugino Sakiko,Yoshida Yasukazu

Abstract

AbstractSinglet oxygen (1O2) is a type of reactive oxygen species involved in numerous physiological activities. We previously reported that 1O2-specific oxidation products are increased in patients with prediabetes, suggesting that measurement of 1O2 may be an important indicator of physiological and pathological conditions. The turnover in the generation and quenching of 1O2 is extremely rapid during biological activities owing to it high reactivity and short lifetime in solution. However, the dynamic changes in 1O2 generation in living cells have not been fully explored. In this study, we investigated whether the kinetics of 1O2 generation can be quantified using a far-red fluorescent probe for mitochondrial 1O2, Si-DMA, following addition of the 1O2 generator, endoperoxide, to mammalian cells. The kinetics of Si-DMA fluorescence intensity dose-dependently increased following treatment of mammalian living cells with endoperoxide. Alternatively, treatment with 1O2 quenchers decreased the fluorescence intensities following endoperoxide treatment. Our results indicate that the kinetics of intracellular 1O2 can be readily obtained using Si-DMA and time-lapse imaging, which provides new insights into the mechanism of 1O2 generation in mammalian cells and the exploration of 1O2 generators and quenchers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3