Trophic state resilience to hurricane disturbance of Lake Yojoa, Honduras

Author:

Fadum J. M.,Waters M. N.,Hall E. K.

Abstract

AbstractCyclones are a poorly described disturbance in tropical lakes, with the potential to alter ecosystems and compromise the services they provide. In November 2020, Hurricanes Eta and Iota made landfall near the Nicaragua-Honduras border, inundating the region with a large amount of late-season precipitation. To understand the impact of these storms on Lake Yojoa, Honduras, we compared 2020 and 2021 conditions using continuous (every 16 days) data collected from five pelagic locations. The storms resulted in increased Secchi depth and decreased algal abundance in December 2020, and January and February 2021, and lower-than-average accumulation of hypolimnetic nutrients from the onset of stratification (April 2021) until mixus in November 2021. Despite the reduced hypolimnetic nutrient concentrations, epilimnetic nutrient concentrations returned to (and in some cases exceeded) pre-hurricane levels following annual water column turnover in 2021. This response suggests that Lake Yojoa’s trophic state had only an ephemeral response to the disturbance imposed by the two hurricanes, likely due to internal input of sediment derived nutrients. These aseasonal storms acted as a large-scale experiment that resulted in nutrient dilution and demonstrated the resilience of Lake Yojoa’s trophic state to temporary nutrient reductions.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3