Dominant nitrogen metabolisms of a warm, seasonally anoxic freshwater ecosystem revealed using genome resolved metatranscriptomics

Author:

Fadum J. M.,Borton M. A.,Daly R. A.,Wrighton K. C.,Hall E. K.

Abstract

AbstractReactive nitrogen (N) is one of the principal drivers of primary productivity across aquatic ecosystems. However, the microbial communities and emergent metabolisms which govern N cycling in tropical lakes are both distinct from and poorly understood relative to those found in temperate lakes. This latitudinal difference is largely due to the warm (>20 °C) temperatures of tropical lake anoxic hypolimnions (deepest portion of a stratified water column) which result in unique anaerobic metabolisms operating without the temperature constraints found in lakes at temperate latitudes. As such, tropical hypolimnions provide a platform for exploring microbial membership and functional diversity. To better understand N metabolism in warm anoxic waters, we combined measurements of geochemistry and water column thermophysical structure with genome resolved metatranscriptomic analyses of the water column microbiome in Lake Yojoa, Honduras. We sampled above and below the oxycline in June 2021, when the water column was stratified, and again at the same depths and locations in January 2022, when the water column was mixed. We identified 335 different lineages and significantly different microbiome membership between seasons and, when stratified, between depths. Notably,nrfA(indicative of dissimilatory nitrate reduction to ammonium) was upregulated relative to other N metabolism genes in the June hypolimnion. This work highlights the taxonomic and functional diversity of microbial communities in warm and anoxic inland waters, providing insight into the contemporary microbial ecology of tropical ecosystems as well as inland waters at higher latitudes as water columns continue to warm in the face of global change.ImportanceIn aquatic ecosystems where primary productivity is limited by nitrogen (N), whether continuously, seasonally, or in concert with additional nutrient limitations, increased inorganic N availability can reshape ecosystem structure and function, potentially resulting in eutrophication and even harmful algal blooms (HABs). Whereas microbial metabolic processes such as mineralization and dissimilatory nitrate reduction to ammonium (DNRA) increase inorganic N availability, denitrification removes bioavailable N from the ecosystem. Therefore, understanding these key microbial mechanisms is critical to the sustainable management and environmental stewardship of inland freshwater resources. This study identifies and characterizes these crucial metabolisms in a warm, seasonally anoxic ecosystem. Results are contextualized by an ecological understanding of the study system derived from a multi-year continuous monitoring effort. This unique dataset is the first of its kind in this largely understudied ecosystem (tropical lakes) and also provides insight into microbiome function, and associated taxa, in warm anoxic freshwaters.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3