Author:
Lanzoni Daniele,Rovaris Fabrizio,Montalenti Francesco
Abstract
AbstractComputing the total energy of a system of N interacting dislocations in the presence of arbitrary free surfaces is a difficult task, requiring Finite Element (FE) numerical calculations. Worst, high accuracy requires very fine meshes in the proximity of each dislocation core. Here we show that FE calculations can be conveniently replaced by a Machine Learning (ML) approach. After formulating the elastic problem in terms of one and two-body terms only, we use Sobolev training to obtain consistent information on both energy and forces, fitted using a feed-forward neural network (NN) architecture. As an example, we apply the proposed methodology to corrugated, heteroepitaxial semiconductor films, searching for the minimum-energy dislocation distributions by using Monte Carlo. Importantly, the presence of an interaction cutoff allows for the application of the method to systems of different sizes without the need to repeat training. Millions of energy evaluations are performed, a task which would have been impossible by brute-force FE calculations. Finally, we show how forces can be exploited in running 2D ML-based dislocation dynamics simulations.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献