Author:
Hirata Yusuke,Kashiwabara Naoki,Nada Yuki,Inoue Aya,Sato Emiko,Noguchi Takuya,Matsuzawa Atsushi
Abstract
Abstracttrans-Fatty acids (TFAs) are unsaturated fatty acids containing at least one carbon–carbon double bond in trans configuration, which are classified into two groups according to their food source: industrial TFAs (iTFAs) and ruminant TFAs (rTFAs). Previous epidemiological evidence has demonstrated a preferential association of iTFAs, rather than rTFAs, with various diseases including cardiovascular diseases. However, it is still unknown how iTFAs exert their specific toxicity and what effective treatments are available to mitigate their toxicity. Here, we performed a comprehensive toxicological assessment of TFAs based on the toxicity mechanism that we established previously. We found that iTFAs including elaidic acid (EA), but not other types of fatty acids including rTFAs, had a strong pro-apoptotic effect upon treatment of extracellular ATP, a damage-associated molecular pattern that induces apoptosis through the apoptosis signal-regulating kinase 1 (ASK1)-p38 MAP kinase pathway. We also found that polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), potently suppressed EA-dependent increase in ASK1 activation and apoptosis. These results demonstrate that iTFAs specifically exert toxicity by targeting ASK1, and that PUFAs serve as their effective suppressor. Our study provides a molecular basis for risk assessment of foods, and for new prevention and treatment strategies for TFA-related diseases.
Funder
Japan Society for the Promotion of Science
Takeda Science Foundation
Japan Foundation for Aging and Health
Sapporo Bioscience Foundation
Lotte Research Promotion Grant, Japan
Mitsubishi Foundation
Shimabara Science Promotion Foundation
Japan Foundation of Applied Enzymology
Life Science Foundation of Japan
Fugaku Trust for Medicinal Research
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献