Direct tuning of graphene work function via chemical vapor deposition control

Author:

Yoon Taegeun,Wu Qinke,Yun Dong-Jin,Kim Seong Heon,Song Young Jae

Abstract

AbstractBesides its unprecedented physical and chemical characteristics, graphene is also well known for its formidable potential of being a next-generation device material. Work function (WF) of graphene is a crucial factor in the fabrication of graphene-based electronic devices because it determines the energy band alignment and whether the contact in the interface is Ohmic or Schottky. Tuning of graphene WF, therefore, is strongly demanded in many types of electronic and optoelectronic devices. Whereas study on work function tuning induced by doping or chemical functionalization has been widely conducted, attempt to tune the WF of graphene by controlling chemical vapor deposition (CVD) condition is not sufficient in spite of its simplicity. Here we report the successful WF tuning method for graphene grown on a Cu foil with a novel CVD growth recipe, in which the CH4/H2 gas ratio is changed. Kelvin probe force microscopy (KPFM) verifies that the WF-tuned regions, where the WF increases by the order of ~250 meV, coexist with the regions of intrinsic WF within a single graphene flake. By combining KPFM with lateral force microscopy (LFM), it is demonstrated that the WF-tuned area can be manipulated by pressing it with an atomic force microscopy (AFM) tip and the tuned WF returns to the intrinsic WF of graphene. A highly plausible mechanism for the WF tuning is suggested, in which the increased graphene-substrate distance by excess H2 gases may cause the WF increase within a single graphene flake. This novel WF tuning method via a simple CVD growth control provides a new direction to manipulate the WF of various 2-dimensional nanosheets as well as graphene.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3