Application of Carbon Materials in Conductive Electrodes for Perovskite Solar Cells

Author:

Meng Fanning1ORCID,Wang Dongsheng1,Chang Jiarun1,Li Jihui1,Wang Guiqiang1

Affiliation:

1. School of Chemistry and Materials Bohai University Jinzhou 121003 China

Abstract

Over the past decade, perovskite solar cells (PSCs) have achieved significant achievements. But the golden triangle problem of commercial development, which encompasses high efficiency, high stability, and low cost, remains unresolved. Carbon materials exhibit a diverse range of morphological structures and possess numerous advantages. They are extensively used in PSCs to overcome the challenges encountered during PSCs commercialization. The PSCs utilizing graphene as the top electrodes not only deliver an impressive efficiency of 22.8%, but also show exceptional long‐term stability. The PSCs using carbon nanotubes as transparent conductive electrodes obtain an efficiency of 19%, exhibiting significant potential for scalable applications. Herein, the advantages of carbon materials as conductive electrodes are overviewed. The compatibility of carbon materials as conductive electrodes in PSCs, along with the associated challenges, regulatory strategies, and device performance are systematically discussed in terms of their intrinsic characteristics. The application of carbon materials derived from petroleum by‐products and biomass in the top electrodes of PSCs are summarized in detail. Finally, the underlying reasons why PSCs using carbon electrode show a comparatively lower efficiency when compared to conventional devices is analyzed in‐depth. The potential research directions are proposed to promote the development of carbon conductive electrodes in PSCs.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3