Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH 3 NH 3 PbI 3

Author:

Xing Guichuan1,Mathews Nripan234,Sun Shuangyong2,Lim Swee Sien1,Lam Yeng Ming25,Grätzel Michael36,Mhaisalkar Subodh23,Sum Tze Chien1

Affiliation:

1. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371 Singapore.

2. School of Materials Science and Engineering, NTU, Nanyang Avenue, 639798 Singapore.

3. Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, 637553 Singapore.

4. Singapore-Berkeley Research Initiative for Sustainable Energy, 1 Create Way, 138602 Singapore.

5. Institute of Materials for Electronic Engineering II, Rheinisch Westfälische Technische Hochschule–Aachen, Sommerfeldstrasse 24, D-52074 Aachen, Germany.

6. Laboratory of Photonics and Interfaces, Department of Chemistry and Chemical Engineering, Swiss Federal Institute of Technology, Station 6, CH-1015 Lausanne, Switzerland.

Abstract

Unrestricted Travel in Solar Cells In the past 2 years, organolead halide perovskites have emerged as a promising class of light-harvesting media in experimental solar cells, but the physical basis for their efficiency has been unclear (see the Perspective by Hodes ). Two studies now show, using a variety of time-resolved absorption and emission spectroscopic techniques, that these materials manifest relatively long diffusion paths for charge carriers energized by light absorption. Xing et al. (p. 344 ) independently assessed (negative) electron and (positive) hole diffusion lengths and found them well-matched to one another to the ~100-nanometer optical absorption depth. Stranks et al. (p. 341 ) uncovered a 10-fold greater diffusion length in a chloride-doped material, which correlates with the material's particularly efficient overall performance. Both studies highlight effective carrier diffusion as a fruitful parameter for further optimization.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 6024 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3