Seasonality in telomerase activity in relation to cell size, DNA replication, and nutrients in the fat body of Apis mellifera

Author:

Koubová Justina,Sábová Michala,Brejcha Miloslav,Kodrík Dalibor,Čapková Frydrychová Radmila

Abstract

AbstractIn honeybees (Apis mellifera), the rate of aging is modulated through social interactions and according to caste differentiation and the seasonal (winter/summer) generation of workers. Winter generation workers, which hatch at the end of summer, have remarkably extended lifespans as an adaptation to the cold season when the resources required for the growth and reproduction of colonies are limited and the bees need to maintain the colony until the next spring. In contrast, the summer bees only live for several weeks. To better understand the lifespan differences between summer and winter bees, we studied the fat bodies of honeybee workers and identified several parameters that fluctuate in a season-dependent manner. In agreement with the assumption that winter workers possess greater fat body mass, our data showed gradual increases in fat body mass, the size of the fat body cells, and Vg production as the winter season proceeded, as well as contrasting gradual decreases in these parameters in the summer season. The differences in the fat bodies between winter and summer bees are accompanied by respective increases and decreases in telomerase activity and DNA replication in the fat bodies. These data show that although the fat bodies of winter bees differ significantly from those of summer bees, these differences are not a priori set when bees hatch at the end of summer or in early autumn but instead gradually evolve over the course of the season, depending on environmental factors.

Funder

Grantová Agentura České Republiky

Akademie Věd České Republiky

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3