Telomere length is longer following diapause in two solitary bee species

Author:

Grula Courtney C.ORCID,Rinehart Joshua D.,Anacleto Angelo,Kittilson Jeffrey D.,Heidinger Britt J.,Greenlee Kendra J.,Rinehart Joseph P.,Bowsher Julia H.

Abstract

AbstractThe mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.

Funder

USDA-ARS

NSF-IOS

NSF RII Track-2

Publisher

Springer Science and Business Media LLC

Reference91 articles.

1. Monaghan, P. B., Heidinger, H. J., D’Alba, L., Evans, N. P. & Spencer, K. A. For better or worse: Reduced adult lifespan following early-life stress is transmitted to breeding partners. Proc. R. Soc. B-Biol. Sci. 279, 1729 (2012).

2. Bize, P., Criscuolo, F., Metcalfe, N. B., Nasir, L. & Monaghan, P. Telomere dynamics rather than age predict life expectancy in the wild. Proc. R. Soc. Lond. B 276, 1679–1683 (2009).

3. Mather, K. A., Jorm, A. F., Parslow, R. A. & Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A Biol. Sci. Med. Sci. 66, 202–213 (2011).

4. Blackburn, E. H. Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Lett. 579, 859–862 (2005).

5. Remot, F. et al. Decline in telomere length with increasing age across nonhuman vertebrates: A meta-analysis. Mol. Ecol. 31, 5917–5932 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3