Prediction of malaria transmission drivers in Anopheles mosquitoes using artificial intelligence coupled to MALDI-TOF mass spectrometry

Author:

Nabet Cécile,Chaline Aurélien,Franetich Jean-François,Brossas Jean-Yves,Shahmirian Noémie,Silvie Olivier,Tannier Xavier,Piarroux Renaud

Abstract

AbstractVector control programmes are a strategic priority in the fight against malaria. However, vector control interventions require rigorous monitoring. Entomological tools for characterizing malaria transmission drivers are limited and are difficult to establish in the field. To predict Anopheles drivers of malaria transmission, such as mosquito age, blood feeding and Plasmodium infection, we evaluated artificial neural networks (ANNs) coupled to matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and analysed the impact on the proteome of laboratory-reared Anopheles stephensi mosquitoes. ANNs were sensitive to Anopheles proteome changes and specifically recognized spectral patterns associated with mosquito age (0–10 days, 11–20 days and 21–28 days), blood feeding and P. berghei infection, with best prediction accuracies of 73%, 89% and 78%, respectively. This study illustrates that MALDI-TOF MS coupled to ANNs can be used to predict entomological drivers of malaria transmission, providing potential new tools for vector control. Future studies must assess the field validity of this new approach in wild-caught adult Anopheles. A similar approach could be envisaged for the identification of blood meal source and the detection of insecticide resistance in Anopheles and to other arthropods and pathogens.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference43 articles.

1. Manguin, S. et al. Biodiversity of Malaria in the World (John Libbey Eurotext, Arcueil, 2008).

2. WHO. World Malaria Report 2019, World Health Organization (2020). https://www.who.int/publications-detail/world-malaria-report-2019.

3. Benelli, G. & Beier, J. C. Current vector control challenges in the fight against malaria. Acta Trop. 174, 91–96 (2017).

4. WHO. Global Vector Control Response 2017–2030, World Health Organization (2016). https://www.who.int/vector-control/publications/global-control-response.

5. Johnson, B. J., Hugo, L. E., Churcher, T. S., Ong, O. T. W. & Devine, G. J. Mosquito age grading and vector-control programmes. Trends Parasitol. 36, 39–51 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3