A quantitative model of cellular decision making in direct neuronal reprogramming

Author:

Merlevede Adriaan,Legault Emilie M.,Drugge Viktor,Barker Roger A.,Drouin-Ouellet Janelle,Olariu Victor

Abstract

AbstractThe direct reprogramming of adult skin fibroblasts to neurons is thought to be controlled by a small set of interacting gene regulators. Here, we investigate how the interaction dynamics between these regulating factors coordinate cellular decision making in direct neuronal reprogramming. We put forward a quantitative model of the governing gene regulatory system, supported by measurements of mRNA expression. We found that nPTB needs to feed back into the direct neural conversion network most likely via PTB in order to accurately capture quantitative gene interaction dynamics and correctly predict the outcome of various overexpression and knockdown experiments. This was experimentally validated by nPTB knockdown leading to successful neural conversion. We also proposed a novel analytical technique to dissect system behaviour and reveal the influence of individual factors on resulting gene expression. Overall, we demonstrate that computational analysis is a powerful tool for understanding the mechanisms of direct (neuronal) reprogramming, paving the way for future models that can help improve cell conversion strategies.

Funder

Fonds du Québec en Recherche, Santé

Parkinson Quebec.

US National Institutes of Health

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3