Versatile properties of dynein molecules underlying regulation in flagellar oscillation

Author:

Fujiwara Takashi,Shingyoji Chikako,Higuchi Hideo

Abstract

AbstractDynein is a minus-end-directed motor that generates oscillatory motion in eukaryotic flagella. Cyclic beating, which is the most significant feature of a flagellum, occurs by sliding spatiotemporal regulation by dynein along microtubules. To elucidate oscillation generated by dynein in flagellar beating, we examined its mechanochemical properties under three different axonemal dissection stages. By starting from the intact 9 + 2 structure, we reduced the number of interacting doublets and determined three parameters, namely, the duty ratio, dwell time and step size, of the generated oscillatory forces at each stage. Intact dynein molecules in the axoneme, doublet bundle and single doublet were used to measure the force with optical tweezers. The mean forces per dynein determined under three axonemal conditions were smaller than the previously reported stall forces of axonemal dynein; this phenomenon suggests that the duty ratio is lower than previously thought. This possibility was further confirmed by an in vitro motility assay with purified dynein. The dwell time and step size estimated from the measured force were similar. The similarity in these parameters suggests that the essential properties of dynein oscillation are inherent to the molecule and independent of the axonemal architecture, composing the functional basis of flagellar beating.

Funder

Grants-in-Aid for Scientific Research on Scientific Research from the Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3