STUDIES ON CILIA

Author:

Satir Peter1

Affiliation:

1. From the Department of Physiology-Anatomy, University of California, Berkeley, California 94720

Abstract

This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 µ longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 516 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insights into metachronal propulsion's influence on Ellis fluid flow across tri‐layers amid dynamic thermal transport: Theoretical study;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-07-16

2. The mechanics of cilia and flagella: What we know and what we need to know;Cytoskeleton;2024-05-23

3. Effect of fluid elasticity on the emergence of oscillations in an active elastic filament;Journal of The Royal Society Interface;2024-05

4. The Insect Spermatozoon;Reference Module in Biomedical Sciences;2024

5. The reaction-diffusion basis of animated patterns in eukaryotic flagella;Nature Communications;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3