Rapid and accurate detection of SARS-CoV-2 using the RHAM technology

Author:

Xiao Zhuo,Liu Xiaoli,Kang Xiaolong,Feng Yaoheng,Zheng Lijun,Chen Chong

Abstract

AbstractRapid and sensitive detection of pathogens is of utmost importance in interrupting the transmission chain of infectious diseases. In recent years, this has proven to be vital during the coronavirus disease (COVID-19) global pandemic that put countless lives at risk. Numerous molecular diagnostic methods were used, including RT-PCR, NASBA, E-SDA, E-RCA, LAMP, and RPA. However, these technologies potentially require primer optimization and complex instruments. Here, we propose the RHAM (RNase Hybridization-Assisted amplification) system as a rapid, specific, and sensitive molecular diagnosis platform. Combining the LAMP and RNase HII-mediated fluorescent reporter, the RHAM system can amplify and visualize the target in one isothermal system with high sensitivity (5 × 102 copies/mL). There was no cross-reactivity with other common respiratory viruses. Analysis of clinical samples revealed the RHAM system to generate positive signals within 15 min without false positive or negative results. The present study shows that RHAM is not only an ideal platform for detecting pathogens, such as SARS-CoV-2 but can be potentially applied in POCT settings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3