Abstract
AbstractClimate change forces many species to move their ranges to higher latitudes or elevations. Resulting immigration or emigration of species might lead to functional changes, e.g., in the trait distribution and composition of ecological assemblages. Here, we combined approaches from biogeography (species distribution models; SDMs) and community ecology (functional diversity) to investigate potential effects of climate-driven range changes on frugivorous bird assemblages along a 3000 m elevational gradient in the tropical Andes. We used SDMs to model current and projected future occurrence probabilities of frugivorous bird species from the lowlands to the tree line. SDM-derived probabilities of occurrence were combined with traits relevant for seed dispersal of fleshy-fruited plants to calculate functional dispersion (FDis; a measure of functional diversity) for current and future bird assemblages. Comparisons of FDis between current and projected future assemblages showed consistent results across four dispersal scenarios, five climate models and two representative concentration pathways. Projections indicated a decrease of FDis in the lowlands, an increase of FDis at lower mid-elevations and little changes at high elevations. This suggests that functional dispersion responds differently to global warming at different elevational levels, likely modifying avian seed dispersal functions and plant regeneration in forest ecosystems along tropical mountains.
Funder
Universiteit van Amsterdam
Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz’ of Hesse’s Ministry of Higher Education, Research, and the Arts
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) (IPBES Secretariat, Bonn, Germany, 2019).
2. Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
3. McCain, C. M. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecol. Lett. 12, 550–560 (2009).
4. Dehling, D. M. et al. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055 (2014a).
5. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献