Modulated Photocurrent Spectroscopy for Determination of Electron and Hole Mobilities in Working Organic Solar Cells

Author:

Nojima Hiroki,Kobayashi Takashi,Nagase Takashi,Naito Hiroyoshi

Abstract

AbstractCarrier drift mobility is an important physical constant in the charge transport process of organic solar cells (OSCs). Although time-of-flight and space-charge-limited current techniques have been frequently utilized for mobility measurements, the validity of a new method using modulation photocurrent spectroscopy is discussed in this contribution. The advantages of this method are its applicability to working OSCs with optimized device structures and the simultaneous determination of the electron and hole mobilities. These features make it possible to study the relation between the mobility balance and the solar cell characteristics, such as the power conversion efficiency, using only a single working OSC; hence, it is not necessary to fabricate electron-only and hole-only devices for mobility measurements. After carrying out numerical simulations to examine the validity of this method for mobility determination, the dependence of the mobility balance on the mixing ratio of the electron-donor and –acceptor materials is presented.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3