Density‐functional theory (DFT) and time‐dependent DFT study of the chemical and physical origins of key photoproperties of end‐group derivatives of a nonfullerene acceptor molecule for bulk heterojunction organic solar cells

Author:

Taouali Walid1ORCID,Alimi Kamel12ORCID,Sindhoo Nangraj Asma3,Casida Mark E.4

Affiliation:

1. Laboratoire de Recherche (LR18ES19), Synthèse Asymétrique et Ingénierie Moléculaire de Matériaux Organiques pour l'Électroniques Organiques, Faculté des Sciences de Monastir Université de Monastir Monastir Tunisia

2. Institut National de Recherche et d'Analyse Physicochimique (INRAP) pole technologique Sidi Thabet Ariana Tunisia

3. State Key Laboratory of Microbial Metabolism Shanghai Jiao Tong University Shanghai China

4. Laboratoire de Spectrométrie, Interactions et Chimie théorique (SITh), Département de Chimie Moléculaire (DCM, UMR CNRS/UGA 5250), Institut de Chimie Moléculaire de Grenoble (ICMG, FR2607) Université Grenoble Alpes (UGA) Grenoble France

Abstract

AbstractAs emphasized in a recent review article (Chem. Rev. 2022, 122, 14180), organic solar cell (OSC) photoconversion efficiency has been rapidly evolving with results increasingly comparable to those of traditional inorganic solar cells. Historically, OSC performance improvement focused first on the morphology of P3HT:BM solar cells then went through different stages to shift lately interest towards nonfullerene acceptors (NFAs) as a replacement of BM acceptor (ACC) molecule. Here, we use density‐functional theory (DFT) and time‐dependent DFT to investigate four novel NFAs of A‐D‐A (acceptor‐donor‐acceptor) form derived from the recently synthesized IDIC‐4Cl (Dyes Pigm. 2019, 166, 196). Our level of theory is carefully evaluated for IDIC‐4Cl and then applied to the four novel NFAs in order to understand how chemical modifications lead to physical changes in cyclic voltammetry (CV) frontier molecular orbital energies and absorption spectra in solution. Finally we design and apply a new type of Scharber plot for NFAs based upon some simple but we think reasonable assumptions. Unlike the original Scharber plots where a larger DON band gap favors a larger PCE, our modified Scharber plot reflects the fact that a smaller ACC band gap may favor PCE by filling in gaps in the DON acceptor spectrum. We predict that only the candidate molecule with the least good acceptor A, with the highest frontier molecular orbital energies, and one of the larger CV lowest unoccupied molecular orbital (LUMO) highest unoccupied molecular orbital (HOMO) gaps, will yield a PM6:ACC PCE exceeding that of the parent IDIC‐4Cl ACC. This candidate also shows the largest oscillator strength for the primary (HOMO, LUMO) charge‐ transfer transition and the largest degree of delocalization of charge transfer of any of the ACC molecules investigated here.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3