Shark tooth regeneration reveals common stem cell characters in both human rested lamina and ameloblastoma

Author:

Fraser Gareth J.,Hamed Samar S.,Martin Kyle J.ORCID,Hunter Keith D.

Abstract

Abstract The human dentition is a typical diphyodont mammalian system with tooth replacement of most positions. However, after dental replacement and sequential molar development, the dental lamina undergoes apoptosis and fragments, leaving scattered epithelial units (dental lamina rests; DLRs). DLRs in adult humans are considered inactive epithelia, thought to possess limited capacity for further regeneration. However, we show that these tissues contain a small proportion of proliferating cells (assessed by both Ki67 and PCNA) but also express a number of common dental stem cell markers (Sox2, Bmi1, β-catenin and PH3) similar to that observed in many vertebrates that actively, and continuously regenerate their dentition. We compared these human tissues with the dental lamina of sharks that regenerate their dentition throughout life, providing evidence that human tissues have the capacity for further and undocumented regeneration. We also assessed cases of human ameloblastoma to characterise further the proliferative signature of dental lamina rests. Ameloblastomas are assumed to derive from aberrant lamina rests that undergo changes, which are not well understood, to form a benign tumour. We suggest that dental lamina rests can offer a potential source of important dental stem cells for future dental regenerative therapy. The combined developmental genetic data from the shark dental lamina and ameloblastoma may lead to the development of novel methods to utilise these rested populations of adult lamina stem cells for controlled tooth replacement in humans.

Funder

Leverhulme Trust

RCUK | Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3