Early Regression of the Dental Lamina Underlies the Development of Diphyodont Dentitions

Author:

Buchtová M.12,Štembírek J.3,Glocová K.2,Matalová E.14,Tucker A.S.5

Affiliation:

1. Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Veveri 97, 602 00 Brno, Czech Republic

2. Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic

3. Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic

4. Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic

5. Department of Craniofacial Development and Stem Cell Biology and Department of Orthodontics, King’s College London, Dental Institute, London, SE1 9RT, UK

Abstract

Functional tooth germs in mammals, reptiles, and chondrichthyans are initiated from a dental lamina. The longevity of the lamina plays a role in governing the number of tooth generations. Monophyodont species have no replacement dental lamina, while polyphyodont species have a permanent continuous lamina. In diphyodont species, the dental lamina fragments and regresses after initiation of the second tooth generation. Regression of the lamina seems to be an important mechanism in preventing the further development of replacement teeth. Defects in the complete removal of the lamina lead to cyst formation and has been linked to ameloblastomas. Here, we show the previously unknown mechanisms behind the disappearance of the dental lamina, involving a combination of cell migration, cell-fate transformation, and apoptosis. Lamina regression starts with the loss of the basement membrane, allowing the epithelial cells to break away from the lamina and migrate into the surrounding mesenchyme. Cells deactivate epithelial markers (E-cadherin, cytokeratin), up-regulate Slug and MMP2, and activate mesenchymal markers (vimentin), while residual lamina cells are removed by apoptosis. The uncovering of the processes behind lamina degradation allows us to clarify the evolution of diphyodonty, and provides a mechanism for future manipulation of the number of tooth generations.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3