An object-based sparse representation model for spatiotemporal image fusion

Author:

Asefpour Vakilian Afshin,Saradjian Mohammad Reza

Abstract

AbstractMany algorithms have been proposed for spatiotemporal image fusion on simulated data, yet only a few deal with spectral changes in real satellite images. An innovative spatiotemporal sparse representation (STSR) image fusion approach is introduced in this study to generate global dense high spatial and temporal resolution images from real satellite images. It aimed to minimize the data gap, especially when fine spatial resolution images are unavailable for a specific period. The proposed approach uses a set of real coarse- and fine-spatial resolution satellite images acquired simultaneously and another coarse image acquired at a different time to predict the corresponding unknown fine image. During the fusion process, pixels located between object classes with different spectral responses are more vulnerable to spectral distortion. Therefore, firstly, a rule-based fuzzy classification algorithm is used in STSR to classify input data and extract accurate edge candidates. Then, an object-based estimation of physical constraints and brightness shift between input data is utilized to construct the proposed sparse representation (SR) model that can deal with real input satellite images. Initial rules to adjust spatial covariance and equalize spectral response of object classes between input images are introduced as prior information to the model, followed by an optimization step to improve the STSR approach. The proposed method is applied to real fine Sentinel-2 and coarse Landsat-8 satellite data. The results showed that introducing objects in the fusion process improved spatial detail, especially over the edge candidates, and eliminated spectral distortion by preserving the spectral continuity of extracted objects. Experiments revealed the promising performance of the proposed object-based STSR image fusion approach based on its quantitative results, where it preserved almost 96.9% and 93.8% of the spectral detail over the smooth and urban areas, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OPTIMIZATION OF THE SPARSE REPRESENTATION PARAMETERS FOR THE FUSION OF REMOTELY SENSED SATELLITE IMAGES;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-01-13

2. A deep learning method for individual arable field (IAF) extraction with cross-domain adversarial capability;Computers and Electronics in Agriculture;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3