OPTIMIZATION OF THE SPARSE REPRESENTATION PARAMETERS FOR THE FUSION OF REMOTELY SENSED SATELLITE IMAGES

Author:

Asefpour Vakilian A.,Saradjian M. R.

Abstract

Abstract. Image fusion methods are widely used in remote sensing applications to obtain more information about the features in the study area. One of the recent satellite image fusion techniques that can deal with noise and reduce computational cost and deal with geometric misregistration is sparse representation model. The important part of creating a generalized sparse representation model for satellite image fusion problems is defining initial constraints and adjusting the corresponding regularization coefficients. Regularization coefficients play an essential role in the performance of the sparse representation model and convergence of the optimization solution. Also, the number and size of sub-images extracted from the dictionary matrix in the sparse representation model, and the number of iterations of the optimization step are important in building a sparse representation model. Therefore, in this research, the four parameters that affect the performance of the sparse representation model were investigated: the number of sub-images, the size of sub-images, regularization coefficients, and the number of iterations. Results obtained from pan-sharpening of OLI-8 images showed that optimal values for the number and size of sub-images, regularization coefficients, and the number of iterations were equal to 150, 9×9 pixels, 10-4, and 4 respectively. Results from this study can be generalized to other satellite image fusion problems using sparse representation models.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3