Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition

Author:

Wang Fuzhang,Ahmad Shafiq,Al Mdallal Qasem,Alammari Maha,Khan Muhammad Naveed,Rehman Aysha

Abstract

AbstractThe under-consideration article mainly focuses an unsteady three-dimensional Maxwell bio-convective nanomaterial liquid flow towards an exponentially expanding surface with the influence of chemical reaction slip condition. The feature of heat transport is achieving in the existenceof convective boundary condition and variable thermal conductivity. With the help of similarity variables, the flow form of equations is turned into a nonlinear form of coupled ODEs. The numerical solutions are calculated by adopting bvp4c function of MATLAB. Impact of distinct characteristics on the temperature, velocity microorganism and concentration field is graphically evaluated. Moreover, physical quantities are observed via graphs and tabulated data in details. It has been seen by the observation that the involvement of unsteadiness parameter restricts the change of laminar to turbulent flow. Further, for increasing velocity slip parameter velocity component in both directions shows lessening behavior. The Nusselt number exhibits diminishing behavior for larger values of Deborah number, and it shows the opposite behavior for larger values of convective parameter.

Funder

Qasem Al Mdallal

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3