Significance of Cattaneo–Christov heat flux theory and convective heat transport on Maxwell nanofluid flow

Author:

Kamran Muhammad Shoaib1,Irfan Muhammad2ORCID,Mansoor Muavia1ORCID,Muhammad Taseer3,Ul‐Hassan Qazi Mahmood1

Affiliation:

1. Department of Mathematics University of Wah Wah Cantt Pakistan

2. Department of Mathematical Sciences Federal Urdu University of Arts Science and Technology Islamabad Pakistan

3. Department of Mathematics College of Science King Khalid University Abha Saudi Arabia

Abstract

AbstractRecently, nanofluids, which are solutions of fluids mixed with suspended nano‐particles, for instance, carbon nanotubes, metals, and metal oxides, have become a favorable alternative to conventional coolants. Caused by their outstanding thermal performance of conductivity, nanofluids are extensively used in battery‐operated drums, thermoelectric producers, and solar power. The suspension of minor solid components in energy dispersion fluids boosts their thermal enactment of conductivity and gives an economical and resourceful method to increase their transfer properties of heat significantly. Furthermore, additions of nanofluids to numerous engineering and mechanical matters, for instance, electrical kit conserving, heat exchangers, and chemical progressions, are uses of nanofluid. Here, the purpose of this work is to elaborate on the flow of Maxwell nanofluid by considering chemical reactions and heat sink/source. The mathematical structure is established with the presence of Brownian movement and thermophoresis effects. The remarkable aspects of non‐Fourier heat flux are also considered with the transport phenomenon of convective conditions. The similarity alterations change the partial differential equations (PDEs) into ordinary differential equations (ODEs). The obtained expressions of ODEs are solved numerically via the bvp4c approach. The graphical sketches display the declining behavior of Maxwell factor for velocity; however, the same impacts are examined for Brownian and thermophoresis factors. Furthermore, Schmidt and chemical reaction factors decline the concentration field of Maxwell nanofluid.

Funder

King Khalid University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3