Abstract
AbstractEffective conservation of endangered species requires knowledge of the full range of life-history strategies used to maximize population resilience within a stochastic and ever-changing environment. California’s endemic Delta Smelt (Hypomesus transpacificus) is rapidly approaching extinction in the San Francisco Estuary, placing it in the crossfire between human and environmental uses of limited freshwater resources. Though managed as a semi-anadromous species, recent studies have challenged this lifecycle model for Delta Smelt, suggesting the species is an estuarine resident with several localized “hot-spots” of abundance. Using laser-ablation otolith strontium isotope microchemistry, we discovered three distinct life-history phenotypes including freshwater resident (FWR), brackish-water resident (BWR), and semi-anadromous (SA) fish. We further refined life-history phenotypes using an unsupervised algorithm and hierarchical clustering and found that in the last resilient year-class, the FWR (12%) and BWR (7%) comprised a small portion of the population, while the majority of fish were SA (81%). Furthermore, the semi-anadromous fish could be clustered into at least four additional life-history phenotypes that varied by natal origin, dispersal age and adult salinity history. These diverse life-history strategies should be incorporated into future conservation and management efforts aimed at preventing the extinction of Delta Smelt in the wild.
Publisher
Springer Science and Business Media LLC
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献