Ecosystem service valuation and multi-scenario simulation in the Ebinur Lake Basin using a coupled GMOP-PLUS model

Author:

Tang Hua,Halike Abudureheman,Yao Kaixuan,Wei Qianqian,Yao Lei,Tuheti Buweiayixiemu,Luo Jianmei,Duan Yuefan

Abstract

AbstractThe Ebinur Lake Basin is an ecologically sensitive area in an arid region. Investigating its land use and land cover (LULC) change and assessing and predicting its ecosystem service value (ESV) are of great importance for the stability of the basin's socioeconomic development and sustainable development of its ecological environment. Based on LULC data from 1990, 2000, 2010, and 2020, we assessed the ESV of the Ebinur Lake Basin and coupled the grey multi-objective optimization model with the patch generation land use simulation model to predict ESV changes in 2035 under four scenarios: business-as-usual (BAU) development, rapid economic development (RED), ecological protection (ELP), and ecological–economic balance (EEB). The results show that from 1990 to 2020, the basin was dominated by grassland (51.23%) and unused land (27.6%), with a continuous decrease in unused land and an increase in cultivated land. In thirty years, the total ESV of the study area increased from 18.62 billion to 67.28 billion yuan, with regulation and support services being the dominant functions. By 2035, cultivated land increased while unused land decreased in all four scenarios compared with that in 2020. The total ESV in 2035 under the BAU, RED, ELP, and EEB scenarios was 68.83 billion, 64.47 billion, 67.99 billion, and 66.79 billion yuan, respectively. In the RED and EEB scenarios, ESV decreased by 2.81 billion and 0.49 billion yuan, respectively. In the BAU scenario, provisioning and regulation services increased by 6.05% and 2.93%, respectively. The ELP scenario, focusing on ecological and environmental protection, saw an increase in ESV for all services. This paper can assist policymakers in optimizing land use allocation and provide scientific support for the formulation of land use strategies and sustainable ecological and environmental development in the inland river basins of arid regions.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3