Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor

Author:

Kim Hyeong-Min,Park Jae-Hyoung,Lee Seung-Ki

Abstract

Abstract Fiber-optic-based localized surface plasmon resonance (FO-LSPR) sensors with three-dimensional (3D) nanostructures have been developed. These sensors were fabricated using zinc oxide (ZnO) nanowires and gold nanoparticles (AuNPs) for highly sensitive plasmonic biosensing. The main achievements in the development of the biosensors include: (1) an extended sensing area, (2) light trapping effect by nanowires, and (3) a simple optical system based on an optical fiber. The 3D nanostructure was fabricated by growing the ZnO nanowires on the cross-section of optical fibers using hydrothermal synthesis and via immobilization of AuNPs on the nanowires. The proposed sensor outputted a linear response according to refractive index changes. The 3D FO-LSPR sensor exhibited an enhanced localized surface plasmon resonance response of 171% for bulk refractive index changes when compared to the two-dimensional (2D) FO-LSPR sensors where the AuNPs are fixed on optical fiber as a monolayer. In addition, the prostate-specific antigen known as a useful biomarker to diagnose prostate cancer was measured with various concentrations in 2D and 3D FO-LSPR sensors, and the limits of detection (LODs) were 2.06 and 0.51 pg/ml, respectively. When compared to the 2D nanostructure, the LOD of the sensor with 3D nanostructure was increased by 404%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3