Abstract
Abstract
Inhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximately 20% of mCRPC patients develop disease with AR independent resistance mechanisms. In this study, we generated two anti-androgen and castration resistant prostate cancer cell models that do not rely on AR activity for growth despite robust AR expression (AR indifferent). They are thus resistant against all modern AR signalling inhibitors. Both cell lines display cross-resistance against the chemotherapeutic drug docetaxel due to MCL1 upregulation but remain sensitive to the PARP inhibitor olaparib and the pan-BCL inhibitor obatoclax. RNA-seq analysis of the anti-androgen resistant cell lines identified hyper-activation of the E2F cell-cycle master regulator as driver of AR indifferent growth, which was caused by deregulation of cyclin D/E, E2F1, RB1, and increased Myc activity. Importantly, mCRPC tissue samples with low AR activity displayed the same alterations and increased E2F activity. In conclusion, we describe two cellular models that faithfully mimic the acquisition of a treatment induced AR independent phenotype that is cross-resistant against chemotherapy and driven by E2F hyper-activation.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 65, 467–479 (2014).
2. Katzenwadel, A. & Wolf, P. Androgen deprivation of prostate cancer: Leading to a therapeutic dead end. Cancer Lett. 367, 12–17 (2015).
3. Cornford, P. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur. Urol. 71, 630–642 (2017).
4. Semenas, J., Dizeyi, N. & Persson, J. L. Enzalutamide as a second generation antiandrogen for treatment of advanced prostate cancer. Drug Des. Devel. Ther. 7, 875–881 (2013).
5. Clegg, N. J. et al. ARN-509: A novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献