Neuroendocrine Prostate Cancer Drivers SOX2 and BRN2 Confer Differential Responses to Imipridones ONC201, ONC206, and ONC212 in Prostate Cancer Cell Lines

Author:

Purcell Connor,Srinivasan Praveen R.,Pinho-Schwermann Maximilian,MacDonald William J.,Ding Elizabeth,El-Deiry Wafik S.ORCID

Abstract

AbstractProstate cancer (PCa) is the leading cause death from cancer in men worldwide. Approximately 30% of castrate-resistant PCa’s become refractory to therapy due to neuroendocrine differentiation (NED) that is present in <1% of androgen-sensitive tumors. First-in-class imipridone ONC201/TIC10 has shown clinical activity against midline gliomas, neuroendocrine tumors and PCa. We explored the question of whether NED promotes sensitivity to imipridones ONC201 and ONC206 by inducible overexpression of SOX2 and BRN2, well-known neuroendocrine drivers, in human PCa cell lines DU145 or LNCaP. Slight protection from ONC201 or ONC206 with SOX2 and BRN2 overexpression was observed in the inducible LNCaP cells but not in the DU145 cells. At 2 months, there was an apparent increase in CLpP expression in LNCaP SOX2-overexpressing cells but this did not confer enhanced sensitivity to ONC201. DU145 SOX2-overexpressing cells had a significantly reduced ONC201 sensitivity than DU145 control cells. The results support the idea that treatment of castrate-resistant prostate cancer by imipridones may not be significantly impacted by neuroendocrine differentiation as a therapy-resistance mechanism. The results support further testing of imipridones across subtypes of androgen-sensitive and castrate-resistant prostate cancer.

Publisher

Cold Spring Harbor Laboratory

Reference25 articles.

1. Cancer statistics, 2023

2. Drivers of AR indifferent anti-androgen resistance in prostate cancer cells;Scientific Reports,2019

3. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer

4. Clinical and Biological Features of Neuroendocrine Prostate Cancer;Current Oncology Reports,2021

5. Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells;Neuro-Oncology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3