Simulation of the water-based hybrid nanofluids flow through a porous cavity for the applications of the heat transfer

Author:

Gul Taza,Nasir Saleem,Berrouk Abdallah S.,Raizah Zehba,Alghamdi Wajdi,Ali Ishtiaq,Bariq Abdul

Abstract

AbstractThis study looks at the natural convections of Cu + Al2O3/H2O nanofluid into a permeable chamber. The magnetic field is also executed on the flow field and the analysis has been approached numerically by the control volume method. The study of hybrid nanofluid heat in terms of the transfer flux was supplemented with a wide range of parameters of hybrid nanofluid fractions, Rayleigh numbers Hartmann numbers and porosity factor. It's also determined that the flow and thermal distribution are heavily affected by the concentration of the nanoparticles. The concentration of nanoparticles increases the transport of convective energy inside the enclosure. The primary findings demonstrate that a rise in both the Rayleigh number and Darcy number leads to an improvement in convective heat transfer within the enclosure. However, the porosity has a negligible effect. Additionally, the rotation in a clockwise direction has a beneficial impact on the dispersion of heat transfer throughout the cavity. Furthermore, it is concluded that hybrid nanofluids are more reliable than conventional fluids in improving thermal properties.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3