Modelling and Simulation of the Effect of Prandtl and Soret Numbers on Mass Concentration with Magnetic Intensity in a Blood Channel

Author:

Bunonyo K. W.,Butter J. K.,Eli I. C.

Abstract

Mass concentration in blood is the amount of protein, glucose, and waste products present in a given blood volume, and the change in mass concentration can lead to several health challenges, such as cardiovascular problems. However, this research was focused on formulating a system of partial differential mathematical models that represent energy transfer in the blood and mass concentration. The models were further scaled to be dimensionless, reduced to ordinary differential equations using some perturbation conditions, and solved analytically using the Laplace method, where the temperature and mass concentration profiles were obtained. In addition, the numerical simulation was carried out using Wolfram Thematic, version 12, and the impact of the Prandtl and Soret numbers was investigated. The results indicate that the Prandtl number, Soret number, and many other numbers that appeared in the system were varied to understand the parameter changes on the profiles. Conclusion: We conclude that the oscillatory parameter and Prandtl number increased the temperature profiles, while other parameters increased the mass concentration as they increased.

Publisher

African - British Journals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3