Structural and surface characterizations of 2D β-In2Se3/3D β-Ga2O3 heterostructures grown on c-Sapphire substrates by molecular beam epitaxy

Author:

Nallasani Umeshwar Reddy,Wu Ssu-Kuan,Diep Nhu Quynh,Lin Yen-Yu,Wen Hua-Chiang,Chou Wu-Ching,Chia Chin-Hau

Abstract

AbstractIntegrating two-dimensional (2D) layered materials with wide bandgap β-Ga2O3 has unveiled impressive opportunities for exploring novel physics and device concepts. This study presents the epitaxial growth of 2D β-In2Se3/3D β-Ga2O3 heterostructures on c-Sapphire substrates by plasma-assisted molecular beam epitaxy. Firstly, we employed a temperature-dependent two-step growth process to deposit Ga2O3 and obtained a phase-pure $$(\overline{2 }01)$$ ( 2 ¯ 01 ) β-Ga2O3 film on c-Sapphire. Interestingly, the in-situ reflective high-energy electron diffraction (RHEED) patterns observed from this heterostructure revealed the in-plane ‘b’ lattice constant of β-Ga2O3 ~ 3.038Å. In the next stage, for the first time, 2D In2Se3 layers were epitaxially realized on 3D β-Ga2O3 under varying substrate temperatures (Tsub) and Se/In flux ratios (RVI/III). The deposited layers exhibited (00l) oriented β-In2Se3 on $$(\overline{2 }01)$$ ( 2 ¯ 01 ) β-Ga2O3/c-Sapphire with the epitaxial relationship of $$[11\overline{2 }0]$$ [ 11 2 ¯ 0 ] β-In2Se3 || [010] β-Ga2O3 and $$[10\overline{1 }0]$$ [ 10 1 ¯ 0 ] β-In2Se3 || [102] β-Ga2O3 as observed from the RHEED patterns. Also, the in-plane ‘a’ lattice constant of β-In2Se3 was determined to be ~ 4.027Å. The single-phase β-In2Se3 layers with improved structural and surface quality were achieved at a Tsub ~ 280 °C and RVI/III ~ 18. The microstructural and detailed elemental analysis further confirmed the epitaxy of 2D layered β-In2Se3 on 3D β-Ga2O3, a consequence of the quasi-van der Waals epitaxy. Furthermore, the β-Ga2O3 with an optical bandgap (Eg) of ~ 5.04 eV (deep ultraviolet) when integrated with 2D β-In2Se3, Eg ~ 1.43eV (near infra-red) can reveal potential applications in the optoelectronic field.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3