Author:
Kuo Chu-Chia,Liu Yea-Chen,Su Yu,Liu Ho-Yih,Lin Cheng-Tao
Abstract
AbstractClimate change has caused severe impacts on ecosystems and biodiversity globally, especially to vulnerable mountain ecosystems; the summits bear the brunt of such effects. Therefore, six summits in Taiwan were monitored based on a standardized multi-summit approach. We used both statistical downscaling of climate data and vegetation cover data to calculate climate niches to assess the impacts of climate change. Two indicators, thermophilic and moist-philic, were applied to evaluate the overall response of vegetation dynamics. The results revealed that potential evapotranspiration increased significantly and led to a declining tendency in monthly water balance from 2014 to 2019. The general pattern of species richness was a decline. The difference in plant cover among the three surveys showed an inconsistent pattern, although some dominant species expanded, such as the dwarf bamboo Yushania niitakayamensis. The thermophilic indicator showed that species composition had changed so that there were more thermophilic species at the three lowest summits. The moist-philization indicator showed a decline of humid-preferred species in the latest monitoring period. Although total precipitation did not decrease, our results suggest that the variability in precipitation with increased temperature and potential evapotranspiration altered alpine vegetation composition and could endanger vulnerable species in the future.
Funder
Forestry Bureau of Taiwan
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).
2. Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115. https://doi.org/10.1038/nclimate1329 (2012).
3. Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. 115, 201713936. https://doi.org/10.1073/pnas.1713936115 (2018).
4. Gigauri, K., Akhalkatsi, M., Abdaladze, O. & Nakhutsrishvili, G. Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pak. J. Bot. 48, 1893–1902 (2016).
5. Gritsch, A., Dirnböck, T. & Dullinger, S. Recent changes in alpine vegetation differ among plant communities. J. Veg. Sci. 27, 1177–1186. https://doi.org/10.1111/jvs.12447 (2016).